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Multi-month forecasts of marine heatwaves 
and ocean acidification extremes
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Marine heatwaves and ocean acidification extreme events are periods during 
which temperature and acidification reach statistically extreme levels 
(90th percentile), relative to normal variability, potentially endangering 
ecosystems. As the threats from marine heatwaves and ocean acidification 
extreme events grow with climate change, there is need for skilful predictions 
of events months to years in advance. Previous work has demonstrated that 
climate models can predict marine heatwaves up to 12 months in advance 
in key regions, but forecasting of ocean acidification extreme events has 
been difficult due to the complexity of the processes leading to extremes 
and sparse observations. Here we use the Community Earth System Model 
Seasonal-to-Multiyear Large Ensemble to make predictions of marine 
heatwaves and two forms of ocean acidification extreme events, as defined 
by anomalies in hydrogen ion concentration and aragonite saturation state. 
We show that the ensemble skilfully predicts marine heatwaves and ocean 
acidification extreme events as defined by aragonite saturation state up to 
1 year in advance. Predictive skill for ocean acidification extremes as defined 
by hydrogen ion concentration is lower, probably reflecting mismatch 
between model and observed state. Skill is highest in the eastern Pacific, 
reflecting the predictable contribution of El Niño/Southern Oscillation to 
regional variability. A forecast generated in late 2023 during the 2023–2024  
El Niño event finds high likelihood for widespread marine heatwaves and 
ocean acidification extreme events in 2024.

Alongside long-term alterations to the marine system associated 
with anthropogenic climate change1–4, there is increasing concern for 
short-term extreme events that can have dramatic impacts on marine 
ecosystems5–7. Accurate forecasts of extreme events have the potential 
to alter management practices in advance to plan for, if not mitigate, 
impacts on marine ecosystems8. Marine heatwaves (MHWs), extremes 
in ocean temperature, are relatively well studied and driven by a variety 
of atmospheric and oceanic dynamical processes9–14. MHWs can have 
profound impacts on marine organisms and ecosystems. They have 
been shown to alter primary productivity15, stress keystone species16 

and induce dramatic species redistribution17. They can also impact 
regional biodiversity18 and biogeochemistry5 in the surface and sub-
surface ocean19.

By contrast, ocean acidification extremes (OAXs) are relatively 
understudied, due in part to a historically limited observational 
record, although recent literature discusses the development, loca-
tion and impacts of OAXs20–25. Previous work has focused on two forms 
of OAX: high hydrogen ion concentration ([H+]) and low saturation 
state of seawater in relation to the carbonate mineral aragonite (Ωa). 
Ωa is the degree of saturation of seawater with respect to the mineral 
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generates forecasts of the short-term evolution of the Earth system, 
initialized from a reconstruction of the historical ocean (SMYLE Forced 
Ocean–Sea Ice (FOSI))39. CESM SMYLE has previously demonstrated 
high forecast skill for biogeochemical (dissolved oxygen, dissolved 
inorganic carbon) and physical (temperature) tracers in both the sur-
face and subsurface ocean up to a year following initialization36,39. CESM 
SMYLE has also demonstrated high forecast skill for ENSO anomalies, 
performing similarly to other seasonal forecast systems39. Here, model 
forecasts are validated with observations over the historical period for 
extreme events in the surface ocean at the 90th percentile threshold. 
We find regions of notably high forecast skill over the historical record, 
including in the eastern tropical and northeast Pacific. We use forecasts 
generated in late 2023 to assess the likelihood of global MHWs and 
OAXs in the coming year, finding high likelihood for widespread marine 
extremes throughout 2024.

Skilful forecasts of marine extreme events
CESM SMYLE skilfully forecasts surface MHWs and OAXs (Ωa) up to a 
year in advance regionally, while OAX ([H+]) has generally lower forecast 
skill (Fig. 1). Using the Symmetric Extremal Dependence Index (SEDI; 
Methods), we find significant skill relative to 1,000 random forecasts 
at the 95% confidence interval 1.5 months after initialization for MHWs 
and OAXs (Ωa) globally, with lower global skill in OAX ([H+]) (Fig. 1, row 1). 
Skill degrades with forecast lead time, although MHW forecasts remain 
significantly skilful in the eastern tropical, northeastern, and south-
eastern Pacific up to 10.5 months after initialization (Fig. 1). Similarly, 
OAX (Ωa) skill remains significant in the central tropical, northeast, and 
south Pacific for up to 10.5 months; with skill noticeably higher in the 
northeast Pacific than for MHW forecasts. By contrast, OAX ([H+]) skill is 
globally lower 1.5 months after initialization and further degrades with 
forecast lead time, with limited significant forecast skill in the eastern 
tropical Pacific at all lead times (Fig. 1, third column).

Two other metrics of model skill—forecast accuracy and Brier Skill 
Score—support results from SEDI (Extended Data Fig. 1 and Methods), 
with the tropical Pacific exhibiting high skill for MHW and OAX (Ωa) 

aragonite26; high values of Ωa support aragonite shell maintenance, 
while low values are associated with aragonite shell dissolution. Calcify-
ing organisms are negatively impacted during periods characterized 
by anomalously low Ωa (refs. 27–29). Both [H+] and Ωa are important 
measures of acidification with differing impacts on, and responses 
from, marine organisms23,30,31. For example, pteropods, a type of arago-
nitic zooplankton, respond to variations in both Ωa (impacting shell 
growth, dissolution and survival31–33) and [H+] (impacting embryonic 
development34). While extremes in [H+] and Ωa may co-occur24, they 
are commonly driven by different physical processes23. The drivers of 
extremes in [H+] vary regionally. Subtropical [H+] extremes are generally 
driven by increased temperatures while advection of carbon-rich water 
is the primary control in the tropics and mid to high latitudes (where 
vertical mixing also plays a role). Extremes in Ωa are globally driven by 
enhanced vertical mixing of carbon-rich subsurface water23. As such, 
while the occurrence of MHWs may be regionally tied to OAXs (for 
example, co-occurring [H+] extremes and MHWs in the subtropics23), 
OAXs are also driven by enhanced vertical mixing and advection (which 
are often suppressed during MHWs).

Initialized Earth system model forecasts simulate the evolution of 
the coupled carbon–climate system from a baseline state of historical 
model reconstruction and have demonstrated skilful seasonal to inter-
annual forecasts of marine stressors, including temperature35,36 and 
ocean acidification36,37. Reference 8 skilfully forecast surface MHWs up 
to 1 year in advance using the physics-only North American Multi-model 
Ensemble, a collection of global climate model forecasts. They find 
that MHW forecast skill depends on the El Niño/Southern Oscillation 
(ENSO) state. Similarly, ref. 38 used the CMCC (Euro-Mediterranean 
Center on Climate Change) Seasonal Prediction System version 3.5 
(CMCC-SPS3.5) and found high potential for predicting subsurface 
heatwaves. No previous work has examined the forecast skill and pre-
dictability of OAXs.

In this Article, we use the Community Earth System Model 
(CESM) Seasonal to Multiyear Large Ensemble (SMYLE) to forecast 
surface ocean MHWs and OAXs (both [H+] and Ωa) events. CESM SMYLE 
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Fig. 1 | Forecast skill for MHW, OAX (Ωa), and OAX ([H+]). a–l, Forecast skill 
(SEDI) for MHW (a, d, g and j), OAX (Ωa) (b, e, h and k), and OAX ([H+]) (c, f, i and 
l) for 20 ensemble members from CESM SMYLE at 1.5 (a–c), 3.5 (d–f), 6.5 (g–i) 
and 10.5 (j–l) months lead time. Skill scores range from –1 to 1, with skill close 

to –1 being unskilful, skill of 0 being no better than random forecasts and skill 
of 1 being perfect skill. Dots indicate where skill is not significantly better than 
random forecasts at the 95% confidence interval.
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and generally lower skill for OAX ([H+]). CESM SMYLE also successfully 
estimates the typical frequency and intensity for historical MHWs and 
OAXs, but consistently overestimates the duration of these extreme 
events at a given location (Extended Data Fig. 2).

MHW forecast skill is comparable to that reported by ref. 8, with 
similar regions (for example, the eastern tropical Pacific) demonstrat-
ing significant and long-lasting skill for MHWs. OAX (Ωa) skill mirrors 
that of MHW, while OAX ([H+]) shows distinct patterns. Regions shown 
to be skilful in CESM SMYLE correspond to those that exhibit high cor-
relation in the temporal variability and occurrence of extremes between 
SMYLE FOSI, the historical reconstruction used in initializing CESM 
SMYLE, and observations, including the tropical and northeast Pacific 
(Extended Data Fig. 3). MHW and OAX (Ωa) forecasts are thus expected to 
demonstrate higher skill because CESM2 can successfully recreate these 
events in the tropical and northeast Pacific in the FOSI state estimate.

ENSO state enhances forecast skill
What is driving high and long-lasting skill in MHW and OAX (Ωa) and 
low skill in OAX ([H+])? As noted in previous work, ENSO imprints on the 
seasonal to multiyear forecast skill for physical and biogeochemical 
variability, and has been linked to MHWs in regions including the tropi-
cal and northeast Pacific8,36,40, although the ENSO influence in the North-
east Pacific may be mediated by North Pacific decadal variability41–43. 
Further, the highest correlations in the historical occurrence of variabil-
ity and extreme events between the SMYLE FOSI model reconstruction 
and observations (Extended Data Fig. 3), as well as the highest extreme 
event forecast skill (Fig. 1), occur in regions associated with ENSO-based 
variability in the tropical Pacific. ENSO is thus probably an important 
driver of forecast skill in the tropical and Northeast Pacific.

We examine the dominant modes of variability in our variables of 
interest in the tropical Pacific (region bounded by latitude 30° S–30° N 

and longitude 140° E–280° E) to illustrate the relationship between 
physics and biogeochemistry, and their linkages to ENSO, using empiri-
cal orthogonal function (EOF) analysis of SMYLE FOSI (Fig. 2 and  
Methods). The dominant modes of variability in tropical Pacific sea 
surface temperature (SST) and Ωa anomalies are characterized by a 
similar spatial pattern reminiscent of ENSO (Fig. 2a,d). Indeed, the first 
principal components of SST and Ωa anomalies are highly correlated 
with the Niño3.4 index (rSST = 0.84, P < 0.05; rΩa = 0.75, P < 0.05). Mean-
while, the dominant mode of variability in tropical Pacific [H+] anoma-
lies exhibits a different spatial pattern, and its first principal component 
has a much lower correlation with the Niño3.4 index (r[H+] = 0.07 , 
P > 0.05) (Fig. 2b,f), although we note a higher correlation when lagged 
by 9 months (r[H+],9monthlag = 0.65, P > 0.05).

MHWs induce direct changes in [H+] by altering the carbonate 
chemistry equilibrium constants23,44,45. When MHWs are driven by 
physical ocean processes (for example, stratification of the upper 
ocean or reduced upwelling), the circulation of inorganic carbon is also 
affected, which can have an indirect influence on both [H+] and Ωa  
(refs. 23,45). We demonstrate that circulation-driven [H+] variability is 
closely tied to Niño3.4 by performing EOF analysis on tropical Pacific 
nonthermal [H+] ([H+]nt), where the direct effects of temperature on 
the equilibrium constants have been removed from [H+]. The leading 
EOF of tropical Pacific [H+]nt variability has a spatial pattern similar to 
that of Ωa (Fig. 2c,d), with the first principal component more highly 
correlated with Niño3.4 (r[H+]nt = 0.71, P < 0.05) than [H+]. By contrast, 
Ωa variability is unaffected by temperature variability, as the first prin-
cipal component of both Ωa and Ωa,nt are highly correlated with the 
Niño3.4 index (rΩa,nt = 0.73,P < 0.05, rΩa = 0.75, P < 0.05). While we 
do not attempt to forecast [H+]nt  using CESM SMYLE (a forecast of 
[H+]nt would offer little practical information), we would nevertheless 
expect higher SEDI skill score values. As the primary modes of tropical 
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Fig. 2 | Dominant modes of tropical Pacific variability in SMYLE FOSI from 
principal component analysis. a–e, The first EOF (EOF1) regressed onto 
anomalies is displayed for SST (a), [H+] (b), [H+]nt (c), Ωa (d) and Ωa,nt (e) variability 

in the tropical Pacific region. f, The first principal component (PC1) of tropical 
Pacific SST (red), [H+] (blue) and [H+]nt (blue dashed) variability and the Niño3.4 
index (black dashed). g, As in f but for Ωa (blue) and Ωa,nt (blue dashed).
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Pacific variability of SST, Ωa, Ωa,nt and [H+]nt exhibit strong spatial and 
temporal correlations with ENSO, we expect forecasts made during 
ENSO events (both El Niño and La Niña) to be more skilful than those 
made during neutral conditions. We thus systematically determine the 
differences in skill when the model is initialized during (positive or 
negative) ENSO or neutral ENSO conditions.

In many regions, there is a gain in skill when an extreme event 
forecast is generated during ENSO (El Niño or La Niña) conditions, 
demonstrating the role of ENSO in engendering skilful forecasts of 
MHW and OAX as in ref. 8 (Fig. 3 and Methods). MHWs show a gain in skill 
during ENSO conditions for the first year of model integration, most 
notably in the tropical Pacific. Gain in MHW forecast skill increases for 
up 10.5 lead months after initialization, implying that forecast initializa-
tion during an ENSO event drives long-lasting gains in skill. OAX (Ωa) 
also demonstrates some regional gains in skill when initialized during 
an ENSO event, particularly in the eastern tropical Pacific, California 
Current and Gulf of Alaska regions. Similarly, OAX ([H+]) demonstrate 
regional gains in skill during ENSO events. Surprisingly, the gain in skill 
for OAX ([H+]) manifests more broadly than that of OAX (Ωa) despite 
the latter being consistently more skilful at all lead times (per Fig. 1) 
and the weaker relationship between modelled [H+] variability and 
ENSO (Fig. 2). Although OAX ([H+]) does exhibit a stronger gain in skill, 
absolute skill scores are still relatively low compared with OAX (Ωa) (as 
reflected in the magnitude of skill in Fig. 1).

Our analysis shows that the two indicators of OAXs are not forecast 
equally well, and they do not respond identically to ENSO variability, 
with OAXs defined by extremes in Ωa exhibiting higher forecast skill 
than those defined using [H+]. Both indicators of OAXs are important 
stressors for marine ecosystems; why can we only predict one? OAX 
([H+]) forecast skill is low due to the model’s inability to capture 
observed [H+] variability. Extended Data Fig. 4 demonstrates high 
model predictability, illustrating that forecasts of [H+] extremes have 
the potential to be skilful across the global ocean (predictability is 
determined by verifying CESM SMYLE forecasts against SMYLE FOSI). 
However, this potential predictability is not realized as forecast skill. 

As such, improvements in the model representation of [H+] variability 
to better match observed variability could increase the forecast skill 
of OAX ([H+]). High skill for OAX (Ωa), by contrast, corresponds to low 
model bias in Ωa variability (Extended Data Fig. 3). Changes in Ωa during 
extreme events are driven primarily by variations in [CO3]

2−, which in 
turn derive primarily from variability in dissolved inorganic carbon 
(DIC; Extended Data Fig. 5). During OAX (Ωa), the DIC circulation ten-
dency affects change in surface ocean DIC, with air–sea CO2 flux and 
biology playing less important roles in the anomalous DIC budget. 
These results inform future studies on the utility of OAX forecasts for 
marine managers.

Forecasts of widespread marine extremes in 2024
Forecasts generated in November of 2023 predict widespread MHW 
and OAX (Ωa) events in 2024 (Fig. 4). As these forecasts were gener-
ated during an El Niño event, we expect forecasts of MHW and OAX 
(Ωa) to have high skill in regions with ENSO-related predictability (as 
in Fig. 1). The 2023–2024 ENSO event represents an excellent test bed 
and application for an initialized Earth system model to forecast marine 
extreme events, as we can expect a forecast generated in late 2023 to be 
skilful in some regions up to a year in advance. The 2023–2024 El Niño 
in CESM SMYLE is forecast to peak in January 2024 before declining by 
June 2024 (Fig. 4a). This forecast is consistent with a suite of available 
dynamical ENSO forecasts generated in November 2023, indicating a 
peak in El Niño centred in January 2024 with decline in conditions by 
June 2024, and is further consistent with the evolution of the Niño3.4 
index derived from observations through March 202446,47.

CESM SMYLE forecasts indicate that MHWs are highly likely in 
the eastern Pacific in early 2024, before becoming globally wide-
spread (Fig. 4b,d,f,h,j). In these forecasts, we find a strong signal of 
ENSO-driven MHWs (present at the month of initialization) in the 
eastern tropical Pacific that spreads throughout the tropical Pacific 
through June 2024. The ENSO-associated teleconnections lead to 
strong and widespread MHWs in the Northeast Pacific by June 2024. 
OAXs (Ωa) are projected to be widespread by the middle of 2024 
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Fig. 3 | Gain in SEDI forecast skill from forecasts initialized during ENSO 
events (El Niño or La Niña) relative to forecasts initialized during neutral 
ENSO conditions. a–l, Gain in skill is displayed for MHWs (a, c, g and j), OAX 
(Ωa) (b, e, h and k) and OAX ([H+]) (c, f, i and l) at 1.5 months lead time (a–c), 

3.5 months lead time (d–f), 6.5 months lead time (g–i) and 10.5 months lead time 
(j–l). Positive values indicate a gain in forecast skill during ENSO conditions, 
while negative values indicate a gain in forecast skill during neutral conditions.
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(Fig. 4c,e,g,i,k). The initial stages of this El Niño event are associated 
with widespread OAX events (for example, in the Indian and subtropi-
cal Pacific), although not in the eastern tropical Pacific (probably con-
nected to surface warming in the eastern tropical Pacific suppressing 
low Ωa conditions48). By December 2024, we forecast extreme condi-
tions in Ωa in the Northeast Pacific and equatorial Atlantic. While we 
limit our forecast analysis to the 13 months following initialization 
in November 2023, a subsequent La Niña event would probably be 
associated with strong OAX events in the eastern Pacific (as in the 
historical record in Extended Data Fig. 6, which shows an example 
forecast generated during the 1999–2000 La Niña event with wide-
spread OAX events in the eastern Pacific).

Managing marine systems in the coming decades will require 
improved and expanded forecasts that include marine stressors 
beyond temperature49. The forecasts displayed in Fig. 4 should encour-
age plans to expand existing operational forecasting systems (for 
example, at NOAA Physical Sciences Laboratory50 and Mercator Ocean 
International51) to represent marine biogeochemistry, allowing for 
outlooks on extremes in key ecosystem stressors. Accurate forecasts 
of marine dynamics and extremes can better inform contemporary 
practices of marine managers, especially in a changing climate8,52,53. 
While our study does not make concrete policy recommendations, we 
hope that this work encourages the inclusion of biogeochemical and 
carbon cycle models in operational forecasts and seasonal outlooks 

that currently include only physical tracers. While OAXs are less well 
studied than MHWs, they are demonstrably predictable and have 
potentially dramatic ramifications for ecosystems. Future studies 
should focus on forecasting concurrent extremes, especially those 
that are dynamically favoured to co-occur (for example, MHW and 
OAX [H+]), and examine underlying definitions of extreme events (for 
example, potentially using an absolute rather than statistical defini-
tion of an extreme). As operational forecasts of MHWs become more 
mainstream (as at the National Oceanic and Atmospheric Administra-
tion Physical Sciences Lab and Mercator Ocean International), the 
inclusion of biogeochemical extremes would help better inform the 
health of marine ecosystems.

Online content
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Methods
CESM SMYLE
CESM SMYLE was developed in the CESM2 framework and includes 
explicit rendering of marine biogeochemistry with the Marine Bio-
geochemistry Library, configured with three explicit phytoplankton 
functional groups (diatoms, diazotrophs and picophytoplankton), one 
implicit group (calcifiers), a single zooplankton type, multi-nutrient 
co-limitation (N, P, Si, Fe) and prognostic marine carbonate chemistry 
across 62 vertical model levels and nominal 1° horizontal resolution54–57. 
CESM SMYLE was initialized from the SMYLE FOSI reconstruction, 
an ocean–sea-ice-only simulation forced with the Japanese 55 year 
Reanalysis58 momentum, heat and freshwater fluxes from 1958 to 2019 
and atmospheric CO2 concentrations. CESM SMYLE was initialized four 
times per year (1 February, 1 May, 1 August, 1 November) from 1970 to 
2019 with an integration time of 2 years. A slight perturbation of sur-
face air temperature is included at each initialization to generate 20 
ensemble members. More detail on the CESM SMYLE hindcast can be 
found in refs. 36,39. Output utilized in this study is saved at monthly 
temporal resolution. Alongside the hindcast initializations of CESM 
SMYLE (1970–2019), we also analyse a CESM SMYLE forecast initial-
ized in November 2023 from the SMYLE FOSI that was extended using 
near real-time updates to the JRA-55-based surface dataset for driving 
ocean–sea-ice models58. See Extended Data Fig. 7 for an example of two 
initializations of CESM SMYLE (November 2006 and November 2009) 
in the hindcast period.

Observational products
MHW and OAX events were identified in the observational record on 
the basis of OceanSODA-ETHZ, which interpolates surface ocean partial 
pressure of CO2 (pCO2; from the Surface Ocean CO2 Atlas)59 and alkalinity 
(from the Global Ocean Data Analysis Project)60 observations using 
machine-learning techniques61 at nominal 1° horizontal resolution and 
monthly temporal resolution. Global alkalinity and pCO2 estimates are 
then used to solve the full carbonate system using PyCO2SYS to gen
erate estimates for all carbonate tracers62. SST is from Operational Sea 
Surface Temperature and Sea Ice Analysis63,64. OceanSODA-ETHZ 
includes historical data from 1982 to 2022, is well validated and has 
been used in previous studies on marine carbonate chemistry65 and 
extremes5.

Defining extremes
We calculate statistical extremes using the definition widely adopted 
in the literature9,10,22. Extended Data Fig. 8 displays the relative magni-
tude of statistical extremes compared with seasonal, interannual and 
multidecadal variability. While seasonal variability is prominent in 
the extratropical oceans, the magnitude of extremes can be as large, 
if not larger than, the other sources of variability in the tropics and 
northeast Pacific (Extended Data Fig. 8). We remove the long-term 
anthropogenic trend and the seasonal climatology for SST, Ωa and [H+] 
at each grid cell in observations and CESM SMYLE as in ref. 8. We choose 
to remove long-term anthropogenic warming and acidification trends 
in our assessment of extreme events to account for shifting baselines 
in marine ecosystems as suggested by ref. 66. In observations, MHWs 
are defined by first removing seasonal climatologies and long-term 
warming trends (first-order polynomial). Then a rolling three-monthly 
threshold is created centred on the month of interest, and the 90th 
percentile threshold is calculated. In CESM SMYLE, a similar procedure 
was followed by first removing model climatology and long-term trends 
(along the dimension of year of initialization) from each ensemble 
member. Then a rolling three-lead-time (three monthly) threshold 
was calculated, centred on the lead time (month) of interest. Values 
above this threshold were again considered extreme. This methodo
logy was repeated for [H+] (removing a second-order polynomial trend, 
extreme above the 90th percentile) and Ωa (removing a second-order 
polynomial trend, extreme below the 10th percentile). We process 

the November 2023 SMYLE initialization in the same manner as for 
November-initialized hindcast. As noted, Ωa is most detrimental to 
marine organisms when below saturation (Ωa < 1), but we choose to 
rely on a statistical definition of extremes following previous work23,67. 
The usefulness of statistical definitions of extremes may have a limit 
compared with a threshold based on an absolute value (for example, 
assuming organisms have limited adaptability outside of statistical 
thresholds, rather than an absolute stress threshold), but they prove 
useful when assessing skill across multiple forms of extremes across 
the global ocean as noted by ref. 68. See Extended Data Fig. 7 for an 
example of the appearance of OAX (Ωa) in CESM SMYLE and SMYLE 
FOSI in the hindcast period.

Impacts of ENSO
Principal component analysis was completed for variables of interest 
(SST, Ωa and [H+]) from SMYLE FOSI over the hindcast period (1982–
2019) in the tropical Pacific (30° S to 30° N, and 140° E to 280° E) by 
computing eigenvalues/eigenvectors of spatially weighted anomaly 
covariance matrices. The standardized first principal components of 
SST, Ωa and [H+] were compared with a 5 month running mean of the 
Niño3.4 index (SST anomalies from 5° S to 5° N and 170° W to 120° W). 
The first principal components were then regressed onto SMYLE FOSI 
anomalies to illustrate the spatial patterns associated with the leading 
principal components (EOFs) for each tracer. Anomaly correlation 
coefficients were calculated for the first principal component of each 
variable of interest and the running Niño index, with significance esti-
mated at the 95% confidence interval.

In an effort to disentangle the drivers of [H+] and Ωa variability, the 
linear impact of temperature on [H+] was determined using the pyCO-
2SYS software62 by varying temperature and holding all other inputs 
constant at their climatological mean values. Temperature effects are 
removed by calculating the [H+] variability driven by the thermal com-
ponent ([H+]t) throughout the model historical record and subtracting 
that from [H+], leaving the nonthermal component ([H+]nt). Principal 
component analysis was then repeated for nonthermal values to deter-
mine the dominant modes of variability with the temperature effects 
removed.

To determine the impact of ENSO state at initialization on model 
forecast skill, we separate forecasts by those initialized during El Niño 
(Niño3.4 SSTa greater than 0.5 °C) and La Ninã (Niño3.4 SSTa less than 
–0.5 °C) and those initialized during neutral ENSO state (Niño3.4 SSTa 
between –0.5 °C and 0.5 °C). We then assess skill for these separate 
forecasts and take the difference in forecast skill at each lead time to 
determine the impact of ENSO state at initialization.

Drivers of Ωa forecast skill
We analyse drivers of OAX (Ωa) using the model definition of Ωa:

Ωa ≈
[CO2−3 ]

[CO3]saturation,aragonite
(1)

where [CO3]
2−  and [CO3]

2−
saturation,aragonite  are estimated at each model  

time step. Changes during extremes are driven by [CO3]
2−  as 

[CO3]
2−
saturation,aragonite  is largely a function of pressure. The expected 

changes in [CO3]
2− during extreme events are decomposed into con-

tributions from temperature, salinity, DIC and alkalinity using relation-
ships derived with pyCO2sys62. We take the difference between periods 
of extreme events and all times, indicating which are the most impor-
tant terms in driving changes in Ωa. We decompose the DIC response 
to extreme events using model output tendency terms, including total 
DIC tendency, air–sea CO2 flux and biological flux. Circulation tendency 
is calculated as the residual:

DICcirculation,tendency = DICtendency − Air Sea Fluxtendency − Biologicaltendency
(2)
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As with [CO3]
2−, we take the difference between tendency terms during 

extreme events and all times.

Skill analysis
We combine all annual initializations for analysis of skill (relative to 
OceanSODA-ETHZ) and predictability (relative to SMYLE FOSI), as previ-
ous literature has found little impacts of initialization month on global 
ocean biogeochemical forecast skill (for example, ref. 36). Combining 
initializations further increased the number of forecasts being evaluated, 
increasing the statistical robustness of results. To assess forecast skill, we 
follow established methodologies for evaluating relatively infrequent 
climatic extremes: the SEDI skill score, forecast accuracy and Brier Skill 
Score. First, we classify each grid cell at each time into a 2 × 2 contingency 
table: true positive (extreme event is forecast and does appear in obser-
vations), false positive (extreme event is forecast but does not appear), 
false negative (extreme event is not forecast but does appear) and true 
negatives (extreme event is not forecast and does not appear). Using this 
contingency table, we then calculate SEDI and forecast accuracy. We also 
calculated the Brier Skill Score on the basis of the average of the binary 
forecasts from all ensemble members at a given time.

We follow ref. 8 in using SEDI as our primary skill metric. As noted 
in their work, it does not trend towards a meaningless limit as rarity 
increases, it is base-rate independent (not influenced by changes in 
event frequency), and it is equitable (random forecasts give an expected 
value of zero, or no skill). SEDI scores of greater than zero indicate skill 
better than random chance, while skill of less than zero indicates worse 
than random chance of an event being forecast correctly8,69,70:

SEDI = logF − logH − log(1 − F ) + log(1 − H )
logF + logH + log(1 − F ) + log(1 − H ) (3)

where H is the hit rate (rate of true positives to total observed events) 
and F is the false alarm rate (rate of false positives to total observed 
nonevents).

Significance of SEDI forecast skill is quantified using a Monte 
Carlo simulation with bootstrapping. For a given grid cell, we randomly 
sample (with replacement) each SMYLE forecast to generate random 
forecasts; skill is then calculated for random forecasts. This process is 
repeated 1,000 times to generate a distribution of random forecasts. 
We then calculate the 95% confidence interval for scores of the ran-
dom forecast at each grid cell. Skill scores are considered significant 
if the forecast exceeds the 97.5th percentile of random forecast skill 
distribution.

We use the contingency table to calculate forecast accuracy, which 
is simply the fraction of correctly forecast events8:

FA = truepositives + truenegatives
N

(4)

where N is the total number of forecasts being evaluated. For events 
that occur 10% of the time (as in this study for all metrics), the forecast 
accuracy for a random forecast is calculated as 0.82.

We also calculate the Brier Skill Score (BSS). First, the Brier Score 
(BrS) estimates the mean square error of the probabilistic forecast:

BrS = 1
N

N

∑
i=1

( fi − oi)
2 (5)

where N is the number of forecasts evaluated, fi is the forecast probabi
lity from all ensemble members, oi is the observed probability (zero or 
one). The BrS is then normalized relative to a reference forecast where 
events have a 10% chance of occurring:

BSS = 1 − BrS
BrSref

(6)

The resulting BSS ranges from one (perfect) to negative infinity, with 
zero indicating skill no better than random chance.

Data availability
The CESM Seasonal to Multiyear Large Ensemble and SMYLE FOSI 
are available at https://doi.org/10.26024/pwma-re41 (ref. 39). 
OceanSODA-ETHZ can be accessed at https://doi.org/10.25921/m5wx- 
ja34 (ref. 61).

Code availability
All figures were generated with the open-source software Python. 
Code used in processing and analysing CESM SMYLE output relative 
to SMYLE FOSI and OceanSODA-ETHZ can be found at https://doi.
org/10.5281/zenodo.12103992 (ref. 71).
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Extended Data Fig. 1 | Different skill metrics (SEDI, Forecast Accuracy, 
Brier Skill Score) at lead-time 3.5 months. Forecast skill calculated by three 
different metrics at lead-time 3.5 months. SEDI (as in Fig. 1) (row 1; a,b,c), Forecast 

Accuracy (row 2; d,e,f), and Brier Skill Score (BSS) (row 3: g,h,i) for marine 
heatwaves (column 1), ocean acidification extremes (Ωa), and ocean acidification 
extremes ([H+]).
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Extended Data Fig. 2 | Number, duration, and intensity of extremes in CESM 
SMYLE and observations. Number per month (row 1; a,b,c), duration (row 2; 
d,e,f), and intensity (row 3; g,h,i) of the average extreme event in observations 

and CESM SMYLE for marine heatwaves (column 1), ocean acidification 
extremes (Ωa) (column 2), and ocean acidification extremes ([H+]) (column 3)  
at each location.
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Extended Data Fig. 3 | Correlation between historically observed and 
modelled variability and extremes. Correlation coefficient between historical 
(column 1) variability of (a) sea surface temperature, (c) Ωa, (e) [H+] and (column 2)  
extremes (b) marine heatwaves, (d) ocean acidification extremes (Ωa),(f) ocean 

acidification extremes ([H+]) in SMYLE FOSI and observations (OceanSODA-
ETHZ). Higher correlation coefficients indicate more similar historical variability 
or extreme events.
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Extended Data Fig. 4 | Model skill (CESM SMYLE relative to observations) and 
model predictability (CESM SMYLE relative to SMYLE FOSI). Comparison of 
(column 1) model skill (CESM SMYLE relative to observations) and (column 2)  
model predictability (CESM SMYLE relative to SMYLE FOSI) for 20 ensemble 

members from CESM SMYLE at 1.5 (a-b), 3.5 (c-d), 6.5 (e-f), and 10.5 month 
lead-time (g-h). Skill scores range from -1 to 1, with SEDI score close to -1 being 
unskillful, SEDI score of 0 being no better than random forecasts, and SEDI score 
of 1 being perfect skill.
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Extended Data Fig. 5 | Decomposition and drivers of extremes in aragonite 
saturation state. Decomposition of Ωa to determine drivers of extreme events. 
(row 1) Decomposition of [CO3]2- into drivers of changes during extremes  
relative to all times, including effects of (a) temperature, (b) salinity, (c) DIC,  

(d) Alkalinity. (row 2) Changes to tendency terms of DIC during extremes relative 
to all times, including: (e) total DIC tendency, (f) circulation tendency, (g) air-sea 
CO2 flux tendency, and (h) biological tendency.
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Extended Data Fig. 6 | Example forecast of aragonite saturation state 
extreme events from the 1999 La Niña. Forecasts of Ωa initialized during 
the August 1999 La Niña event. Anomalies (color) and extremes (hatching) in 
(column 1) from an interpolated observational product (OceanSODA-ETHZ), 

and (column 2) CESM SMYLE forecasts (a,b) 1.5, (c,d) 3.5, and (e,f) 5.5 months 
after initialization. Extreme events are defined in observations (below the 10th 
percentile) and in CESM SMYLE (below the 10th percentile in a minimum of 50% of 
ensemble members).

http://www.nature.com/naturegeoscience


Nature Geoscience

Article https://doi.org/10.1038/s41561-024-01593-0

Extended Data Fig. 7 | Example forecast of aragonite saturation state 
extremes in the tropical Pacific from 2004-2012. Example timeseries of 
Ωa anomalies in the central tropical Pacific (0.5∘N, 138.5∘W) for (black) SMYLE 
FOSI and (grey) two November CESM SMYLE initializations (2006a and 2009; 

with ensemble spread represented) from 2006-2012. Occurrence of extreme 
events are indicated for (red lines) SMYLE FOSI and (bar plot) CESM SMYLE (as a 
percentage of ensemble members).
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Extended Data Fig. 8 | Magnitude of variability associated with trend (per 
decade), climatology, interannual variability, and extreme event anomaly 
for aragonite saturation state. Relative magnitude of anomalies associated 

with (row 1; a,b) trend (per decade), (row 2; c,d) seasonal climatology, (row 3; e,f) 
interannual variability, and (row 4; g,h) mean strength of anomaly to generate 
extreme event for temperature and Ωa.
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